

### Recent Superallowed Fermi β-Decay Studies at ISAC

<sup>14</sup>O (S1140) and <sup>74</sup>Rb (S823)

**ISCA Science Forum** 

**February 15, 2012** 

**Gordon Ball TRIUMF** 









#### Unitarity of the Cabbibo, Kobayashi, Maskawa Matrix

$$V_{ud}$$
 (nuclear  $\beta$ -decay) = 0.97425(22)  $V_{us}$  (kaon-decay) = 0.2253(19)  $V_{ub}$  (B meson decay) = 0.00339(44)

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 0.99990 \pm 0.00060.$$

I.S. Towner & J.C. Hardy <u>arXiv:1108.2516v1</u>

### ⇒unitarity is satisfied to a precision of 0.06%.

V<sub>ud</sub> can be determined from high-precision measurements of the ft values for superallowed  $0^+ \rightarrow 0^+$  Fermi  $\beta$ -decays



## V<sub>ud</sub>: The Responsibility of Low-Energy Nuclear Physics

For the special case of  $0^+ \rightarrow 0^+$  (pure Fermi)  $\beta$  decays between isobaric analogue states (superallowed) the matrix element is that of an isospin ladder operator:

$$|M_{fi}|^2 = (T - T_Z)(T + T_Z + 1) = 2$$
 (for T=1)

Strategy: Measure superallowed ft-values, deduce G<sub>V</sub> and V<sub>ud</sub>:

Vector coupling 
$$\longrightarrow$$
  $G_V^2 = \frac{K}{2 \text{ ft}_{\text{Isac Forum Feb 16,2012}}} |V_{ud}| = G_V / G_F \leftarrow \text{Fermi coupling constant}$ 



### Thirteen well-known Superallowed β-emitters





# Half-life of <sup>14</sup>O (S1140): Grinyer et al

- Systematic difference in <sup>14</sup>O (and <sup>10</sup>C) half-life related to counting method
  - Direct β counting
- fast ✓ efficient ✓ no pile up ✓ not selective 🗶
- Gated γ-ray counting
- slow X inefficent X pile up X decay selective ✓







## Superallowed Ft values and Scalar Currents

- Limits on scalar interactions derived from deviations to Ft = constant
  - Ft values for <sup>10</sup>C, <sup>14</sup>O are the most sensitive
  - Resolving the systematics associated with the half-life is essential





## High-precision half-life measurement for 14O

- Simultaneous β and γ-ray counting
  - 8π spectrometer 20 HPGe (γ-ray counting)
  - Zero Degree Scintillator (β counting)
- System test in November 2011









# Half-life of <sup>26</sup>Na via γ-ray counting



G.F. Grinyer et al. NIM A 579 1005 (2007)

# High precision Half-life measurement of <sup>14</sup>O: Proof of principle November 2011

## γ-counting

- Half-life measurements with 8π
  - No contaminant in 2.3 MeV γ gate
  - Statistical precision (1 run) ~ 0.8%







## **Proof of principle November 2011**

### **β-counting**

- Half-life measurement with ZDS
  - <sup>26</sup>Na contaminant (T<sub>1/2</sub> = 1.07 s)
  - Statistical precision (1 run) ~ 0.2%
     but ZDS an untested system



- original plan was to use the 4π gas counter system for βcounting
- diffusion of gaseous elements in aluminized mylar tape
- new thick AI tape system being designed to eliminate this effect



### **ETRIUMF**

# Statistical uncertainties in t ½ for <sup>14</sup>O obtained from fits to simulated data for β and γ counting

An overall precision of <0.05% is required to test the systematic differences observed in the world average data between t  $\frac{1}{2}$  measurements performed by either  $\gamma$ -ray photopeak or direct  $\beta$ -counting



| Nuclide    | Beam on | Beam off | Total Cycles | Beam Rate | Total Precision |       |
|------------|---------|----------|--------------|-----------|-----------------|-------|
|            | (s)     | (s)      | (14 shifts)  | (ions/s)  | (s)             | (%)   |
| β-counting |         |          |              |           |                 |       |
|            | 245     |          | 312          | $10^{3}$  | 0.0249          | 0.035 |
| $^{14}O$   | 105     | 1500     | 339          | $10^{4}$  | 0.0065          | 0.009 |
|            | 11      |          | 360          | $10^{5}$  | 0.0049          | 0.007 |
| γ-counting |         |          |              |           |                 |       |
|            |         |          |              | $10^{3}$  | 0.306           | 0.408 |
| $^{14}O$   | 245     | 800      | 520          | $10^{4}$  | 0.063           | 0.084 |
|            |         |          |              | $10^{5}$  | 0.016           | 0.022 |



## **S1140 Collaboration**



H.Bouzomita G.F.Grinyer



B.Blank J.Giovinazzo



R.A.E.Austin





G.C.Ball

A.B.Garnsworthy

S.Ketelhut

E.Tardiff

C.Unsworth



C.Andreiou D.S.Cross



J.R.Leslie

A.Diaz-Varela R.Dunlop P.Finlay P.E.Garrett B.Hrdinia D.Jamieson A.Laffoley

K.G.Leach

C.E.Svensson



## Studies of superallowed β-emitter <sup>74</sup>Rb





#### **November 2010**

100µA of 500 MeV protons on high-power Nb foil target

Three experiments focused on the study of the superallowed β-emitter <sup>74</sup>Rb (69 ms)

- a high precision branching ratio measurement using the  $8\pi$  spectrometer
- a high precision measurement of the mass of <sup>74</sup>Rb<sup>8+</sup> with TITAN: RFQ, EBIT and MPET
- a measurement of the charge radius of  $^{74}Rb$  using collinear laser spectroscopy: to reduce the theoretical uncertainty in the nuclear structure correction  $\delta C$







# Superallowed Branching ratios for A > 54 β-emitters and the Pandemonium Effect

VOLUME 88, NUMBER 25

PHYSICAL REVIEW LETTERS

24 June 2002

### Superallowed Beta Decay of Nuclei with $A \ge 62$ : The Limiting Effect of Weak Gamow-Teller Branches

J. C. Hardy and I.S. Towner\*

Cyclotron Institute, Texas A & M University, College Station, Texas 77843 (Received 16 January 2002; published 6 June 2002)

The most precise value of  $V_{ud}$ , which is obtained from superallowed nuclear  $\beta$  decay, leads to a violation of Cabibbo-Kobayashi-Maskawa unitarity by  $2.2\sigma$ . Experiments are underway on two continents to test and improve this result through decay studies of odd-odd N=Z nuclei with  $A\geq 62$ . We show, in a series of illustrative shell-model calculations, that numerous weak Gamow-Teller branches are expected to compete with the superallowed branch in each of these nuclei. Though the total Gamow-Teller strength is significant, many of the individual branches will be unobservably weak. Thus, new techniques must be developed if reliable ft values are to be obtained with 0.1% precision for the superallowed branches.

DOI: 10.1103/PhysRevLett.88.252501

PACS numbers: 23.40.Hc, 21.60.Cs, 27.50.+e



For large Q-value  $\beta$  decays, there are generally many weak  $\beta$  branches to the large number of daughter states within the Q-value window.

In the subsequent  $\gamma$  decay, many individual  $\gamma$ -rays may be too weak to identify.

The sum of these unobserved  $\gamma$  intensities will, however, generally be sufficient to prevent precision determination of  $\beta$  decay branching ratios through  $\gamma$ -ray spectroscopy.

3/1/2012 Isac Forum Feb 16,2012 14

### **R**TRIUMF

## High-precision branching ratio measurement for 62Ga: controlling pandemonium via "2+ collector" states

$$I_{gs} = 0.1338(26) \%$$

Unobserved y feeding of lowest three 2<sup>+</sup> levels

$$I'_{2+} = 205 \pm 29 \text{ ppm}$$

$$B_{gs} = I'_{gs} / (I'_{gs} + I'_{2+})$$

Shell Model:  $B_{gs} = 0.20$ 

Adopt ±100% uncertainty:

$$B_{gs} = 0.0 - 0.40$$

$$I'_{gs} = 80 \pm 80 \text{ ppm}$$

Superallowed Branching Ratio:





P. Finlay et al., PRC 78 025502 (2008)



## <sup>74</sup>Rb Superallowed Fermi Beta Decay

#### Original BR measurement at ISAC



#### Gamma-Ray Spectrum (1 HPGe detector)



#### Conversion Electron Spectrum





# <sup>74</sup>Rb Branching ratio Measurement using the 8π spectrometer with Sceptar and PACES (S823) Ryan Dunlop *et al*

#### Goal: reduce uncertainty in BR by factor of 3

• previous value 99.5 +/- 0.1 % obtained using only one HPGe detector and two Si(Li) counters

Data obtained in Nov2010 with HP Ta and 100uA

- ~ 10000/s <sup>74</sup>Rb
- <sup>74</sup>Rb/<sup>74</sup>Ga ratio increased by ~ 150



#### beta-coincident gamma-ray spectra



ac Forum Feb 16,2012

#### beta-coincident Si(Li) spectrum





#### <sup>74</sup>Rb Branching ratio Measurement using the 8π spectrometer

- •High Q-value leads to feeding of many high-lying 1+ levels
- •The low-lying 2+ and 0+ levels act as collector states and enable a measure of total decay strength
- Present experiment confirmed previous decay scheme
- 47 new transitions and 14 new levels were identified. Lowest 1+ observed at 3.337 MeV
- comparison with theory for estimate of unobserved gs decay strength should lead to 0.03% uncertainty in branching ratio





3/1/201

<sup>74</sup>Kr



## **S823 Collaboration**















# A special thanks to the targets and ion source group and ISAC operations

# Thank you! Merci!

TRIUMF: Alberta | British Columbia |
Calgary | Carleton | Guelph | Manitoba |
McMaster | Montréal | Northern British
Columbia | Queen's | Regina | Saint Mary's
Simon Fraser | Toronto | Victoria | York



Centre for Probe Develop and Commercialization

Positron Emission Tomography Imaging

THE UNIVERSITY OF BRITISH COLUMBIA

nordion

LAWSON



## Simulated Performance

Example: <sup>62</sup>Ga Superallowed Fermi β Decay



P. Finlay et al., PRC 78, 025502 (2008)



# TITAN @ TRIUMF



Nov 21, 2011 1



# mass measurement of 74-76Rb8-12+





Factor of 100 increase in precision possible

#### HCI

during this beamtime demonstrated

up to q=12+

#### Ramsey excitation:

- 2 excitation pulses
- improves precision by a factor 2 3



compared to conventional method: improvement by factor >24

S. Ettenauer et al., accepted for publication in PRL arXiv:1109.3494



## Collinear Laser Spectroscopy with cooled bunched beams



#### **ETRIUMF**

# Determination of the charge radius of <sup>74</sup>Rb through collinear laser spectroscopy of cooled bunched beams

TITAN/Laser-spectroscopy: TRIUMF, McGill, Manchester UK

